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Abstract. Online social networks have become an essential communi-
cation channel for the broad and rapid sharing of information. Currently,
the mechanics of such information-sharing is captured by the notion of
cascades, which are tree-like networks comprised of (re)sharing actions.
However, it is still unclear what factors drive cascade growth. Moreover,
there is a lack of studies outside Western countries and platforms such
as Facebook and Twitter. In this work, we aim to investigate what fac-
tors contribute to the scope of information cascading and how to predict
this variation accurately. We examine six machine learning algorithms
for their predictive and interpretative capabilities concerning cascades’
structural metrics (width, mass, and depth). To do so, we use data from
a leading Russian-language online social network VKontakte capturing
cascades of 4,424 messages posted by 14 news outlets during a year.
The results show that the best models in terms of predictive power are
Gradient Boosting algorithm for width and depth, and Lasso Regression
algorithm for the mass of a cascade, while depth is the least predictable.
We find that the most potent factor associated with cascade size is the
number of reposts on its origin level. We examine its role along with
other factors such as content features and characteristics of sources and
their audiences.

Keywords: News diffusion · Machine learning · Information cascades ·
Online social networks · Cascade size prediction.

1 Introduction

Today’s world is overloaded with an enormous amount of information circulating
through various environments. Some environments – emerged from the develop-
ment of technologies, and their penetration in individuals’ daily life – became
widely and skillfully exploited by media on the global level [1]. Social networking
platforms and services as one of such channels provide individuals with facilities
for rapid communication and sharing of texts, photos, videos, links to external
resources, or any other digital pieces of information with other users [2].

The mechanism of such information spreading, in general, involves a source,
that posts information in the first place, and a circle of users exposed to this
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content. Users could be tied to a source by friendship/followership relations,
comprising an audience, or accidentally being exposed to the post. Then, some
of this audience may repost the message and become a source for their audience.
This chain of sharing actions generates a hierarchical tree of information reshar-
ing, usually referred to in the literature as a cascade [3,4]. Cascades capture
information spread better than the ‘small world’ model [5,6], and allow study-
ing social influence in networks [4,7]. Although information cascades are capable
of reaching an enormous number of users, they vary in size and rarely become
large [8]. It is still unclear what factors contribute to the scope of information
cascading and how to predict this variation accurately [9].

Currently, there are two approaches to this task: generative (deductive) and
feature-based (inductive) [10]. The generative approach involves characterizing
and modeling the process of content becoming popular in a social network. Al-
though it provides excellent interpretability, it predicts poorly the variation ob-
served in real-world cascades and may miss possibly valuable predictors. The
feature-based approach formulates this task as a regression/classification prob-
lem that could be solved using a learning algorithm and a set of features with
varying contributions to the explained variance, providing a framework for both
prediction and explanation.

Previous works related to the prediction of cascade growth had been investi-
gating factors connected to it. Although some progress in successful prediction
has been achieved, a consensus on what features are the most essential to it is
not established. Specifically, Cheng and others in [9], aiming to predict whether
the size of information cascade will exceed the predetermined number, discov-
ered that content features of an original (root) post (i.e., attached images and
captions of the post), although being weak predictors on their own, affect the
influence of structural (friendship/followership networks’ properties) and tempo-
ral (the speed of reshares) features. Simultaneously, they report that the average
connectivity of the first reposters contributes to the increasing accuracy of pre-
diction. An alternative finding concerning the influence of content features was
reported in [11], in which features of an author of a tweet along with tweet fea-
tures appeared to be the most essential for prediction. Another study by Hong
and colleagues [12] indicated that the best model performance is achieved when
contextual features are used along with temporal ones and that user activity
aspects enhance marginal predicting performance. One more work [13] exper-
imented on features sets for prediction by applying a hybrid methodology for
feature selection. The results were that channel (information source) features,
i.e., the author’s followers, and content features (whether a post contains URL
and/or image), were repeatedly given the best rank by several feature selection
algorithms. In the interim, a study by Tsur and others [14] proved that a hybrid
model incorporating several feature types (i.e., contextual, structural, and tem-
poral ones) predicts information dissemination much better than partial models,
evidencing that no predicting feature type’s influence is concealed by the pres-
ence of other predicting feature types. There was also an attempt to propose a
model able to integrate all notable findings of the previous research in [15], that
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was successfully empirically tested on the Twitter resharing cascades afterward.
However, the authors’ highest result of prediction hardly accounted even for a
half of the variation in the cascade size.

Additionally, studies on the topic had reported that complex models out-
perform simpler models applied for prediction. Precisely, the finding is valid for
the work by Cao and co-authors [10] that involved a deep learning extension of
the Hawkes processes model in comparison to regularized linear regression, both
utilized to predict the influence of a retweet path. The already mentioned work
by Cheng and colleagues [9] also proved that non-linear algorithms perform a
little better than linear ones when predicting the variation in a cascade’s size.

In this work, we seek to perform an accurate prediction of cascade growth us-
ing six types of regression machine learning algorithms with a wide set of feature
categories. We opt for the regression task for two reasons. The size of a prop-
agation cascade, with no additional transformations implemented, is a numeric
value. The classification formulation requires transforming this value either to
a binary or multinomial variable, which involves dividing the range of values
into categories based on some threshold. As cascade’s size is commonly power-
law distributed [9,16,17], defining such threshold is problematic and reduces
the amount of likely valuable information. Hence, this study aims to determine
which algorithms are the best for predicting cascade’s growth, and to explore
which features are the most strongly associated with the eventual scope of a
cascade. Although we consider factors associated with information propagation,
we aim for a methodological contribution: to investigate the applicability of sev-
eral learning algorithms to the prediction of cascades observed in a real online
network.

Although the most popular social networking service for studying informa-
tion propagation is Twitter, we choose VKontakte (VK) to address the lack of
studies on Russian-speaking platforms and possible discrepancies connected to
local audiences and media. Moreover, VK is the most popular Russian-speaking
service, similar to Facebook, with an audience of 73.4 million users per month
[18].

We divide a notion of cascade’s size into three differentiated metrics: its
depth, width, and mass. We apply the notion of a cascade level, considering
that there is a hierarchy of reposting from node to node. Thus, we define these
metrics as follows:

– width is the biggest amount of nodes at one of the levels of a resharing
cascade;

– mass is the total number of nodes at all levels of a cascade;

– depth is the maximum number of levels in a propagation cascade.

The rest of this paper is organized in the following way. The next section
discusses the data used in the study. Then we elaborate on the methodological
pipeline, after which the results of modeling are summarized. Finally, section 5
provides conclusions and considers the meaning and value of the findings.
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2 Data

2.1 Dataset Description

As it was already mentioned, the data needed for modeling and further analysis
were retrieved from VK service. The scope of the data was narrowed to the official
public pages of leading state-owned Russian television channels (see Table 2).

The data included (1) reposting data – the chains of reposts for top posts from
the channels, (2) reposters data – publicly available profile information of users
who at least once have reshared one of the top posts at any level of a cascade,
(3) channel’s summary statistics – total numbers of posts’ comments, likes to
posts, likes to posts’ comments for each channel computed for the top posts,
(4) post metadata – the popularity figures for each post (i.e., post’s number of
comments, likes, and reposts, the latter accounting for the number of nodes on
the first level of a resharing cascade), and, finally, (5) topic modeling data, a
matrix containing probability distributions of 86 labeled topics over news texts
posted on behalf of the channels, so that each studied information cascade has
some probability of belonging to all of the topics. The topic modeling procedure
was reported in [19].

The full set of features used for prediction can be found in Table 1. The final
dataset used for fitting and assessing the models consisted of 4,424 observations.
Its detailed description by sampled channels is provided in Table 2.

Table 1. List of features within each feature category

Feature Category Feature Data
Type

Root post features
N of comments to each root post Numeric
N of likes to each root post Numeric
N of reposts of each root post on the first level of a
cascade

Numeric

Channel features

The total N of comments to channel’s top posts Numeric
The total N of likes to channel’s top posts Numeric
The total N of likes to comments to channel’s top
posts

Numeric

N of channel’s followers Numeric

Channel’s audience
features

The average age of those subscribed to a channel Numeric
The cumulative N of followers of those subscribed to
a channel

Numeric

The prevalent sex (‘1’ for female and ‘2’ for male) of
those subscribed to a channel

Binomial

Content features Distributions of probabilities of shared information,
text of a root post, belonging to each of the estab-
lished by topic modeling procedure [19] topics. 86 sep-
arated variables in total.

Numeric
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Table 2. Dataset description.

News Commu-
nity

N of
Posts

N of
Reposts

N of Unique
Reposters

N of 1st-level
Reposts

Max Cascade’s
Width

Max Cascade’s
Depth

Max Cascade’s
Mass

RIA News 953 44,703 27,871 40,325 1,048 10 1,151
Russia Today 944 17,661 11,725 15,772 591 6 749
RBC 706 28,030 14,313 24,536 665 8 1,169
Dozhd 593 9,233 5,892 7,593 278 8 405
NTV 441 10,262 7,480 8,448 1,279 12 1,413
Russia 24 252 8,072 6,120 6,733 784 6 907
Russia-Culture 123 3,530 2,050 2,704 109 9 273
MIR24 113 5,412 1,264 4,984 153 8 176
Channel-5 101 2,960 2,312 2,208 126 7 217
Channel 1 72 23,755 18,261 20,656 1,170 6 1,627
TVC (News) 64 392 311 270 10 4 18
Russia-1 51 5,505 3,246 3,281 332 9 614
Monson 8 1,684 1,435 1,500 234 4 255
InoTV 3 15 15 15 6 1 6

2.2 Training and Testing Datasets

The compiled dataset was split into two samples: the training set for fitting
models, and the test set one for assessing their performance, as the standards of
predictive machine learning modeling entail [20].

There are several ways of splitting the initial dataset, and the most common
strategy is to randomly assign 80% of observations to the training sample and
20% to the testing sample. In the case of our data, we can split the dataset
by date of posts’ publication. Thus, models fitted on the older data would be
extrapolating to more recent cascades with more reliable predictions in terms of
external validity. Hence, the data was split as follows: the training set included
all posts up to October 2017 (including), and the test set covered the period
from November 2017 to February 2018. Ultimately, the convention of 80% by
20% data split was met.

2.3 Normalization

In our case, the target variables – width, depth, and mass of a cascade – were
found to be power-law distributed. To comply with the assumptions of the penal-
ized linear regression models – requiring a normally distributed outcome variable
– the resulting data was duplicated, and normalization procedure was applied
so that two sets of data were obtained, non-normalized and normalized. For
normalization, the scaling of matrix-like objects algorithm [21] was applied.



6 Moroz et al.

3 Methods

3.1 Algorithms and Hyperparameters

For modeling cascade’s metrics, a set of algorithms of increasing complexity
with 5-fold cross-validation was chosen. The set included three kinds of penal-
ized linear regressions, i.e., Lasso regression, Ridge regression, and Elastic Net
regression, Decision Tree algorithm, and more complex ensemble methods, such
as the Random Forest and Gradient Boosting Machine algorithms.

The hyperparameters were set to default for Decision Tree, as it was found
that changing hyperparameters does not affect performance significantly on this
data after a series of preliminary tests. In the case of Random Forest, the picking-
up procedure revealed the most optimal hyperparameters for the algorithm. As
for Gradient Boosting, the algorithm automatically chose the hyperparameters
out of a specified list of values based on the RMSE metric. The same was done
for all three types of penalized linear regressions. The detailed settings of hyper-
parameters are present in Table 3.

3.2 Fitted Models

Models were built in a three-stage procedure aimed at defining the best-fit for
predicting cascades’ growth. During the first step, three algorithms, Decision
Tree, Random Forest, and Gradient Boosting, were fit to the non-normalized
training data, each of the algorithms predicting three cascade’s metrics sepa-
rately. After that, the same was reproduced on the normalized training dataset,
with penalized regressions added. Finally, a total of 27 models, with 9 of them
predicting each of three target values, were run on the testing sets and compared
in prediction accuracy based on the R-squared metric. This metric was chosen
as the only one that can be applied to both scaled and non-scaled datasets, dis-
regarding discrepancy in variables’ value range. In situations when R-squared
values were about the same within one of the cascades’ metrics prediction, the
RMSE measure, calculated as the square root of a mean squared difference be-
tween predicted and observed outcomes, was additionally used.

3.3 Interpretation

After the best-fitting models predicting depth, width, and mass of a cascade were
chosen, several methods were applied for the purpose of interpretation. Some of
the utilized algorithms, i.e., linear regressions, are easily interpretable on their
own, producing coefficients for all of the involved independent variables needed
to specify how inputs interact with each other to generate the output.

However, other algorithms – sometimes called “black box” models – are more
complex, which hampers the interpretability of results. Considering this fact, for
interpretation of the Gradient Boosting models, the relative influence of explana-
tory features was used, which is the number of times a feature was selected for
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Table 3. List of tuned hyperparameters

Algorithm Parameter
name

Parameter Description Range

Decision Tree mincriterion A value of test statistics or (1-p) that should be
exceeded to perform a split

0 (default)

Random Forest
mtry The number of features randomly sampled as can-

didates at each split
50

ntree the total number of trees to grow in one run 500

Gradient Boosting
Machine

interaction.depth number of splits an algorithm has to perform on
a single tree

6 (Salford default set-
ting [22])

n.trees The total number of trees to grow in one run 500, 800, 1000, 2000
shrinkage A learning rate, stands for the amount of penalty

that will be applied to reduce the effect of each
additional tree built

0.001, 0.005, 0.01,
0.05, 0.1, 0.5

n.minobsinnode The minimum number of observations in terminal
nodes of each tree

10, 15, 20, 25

Lasso Regression
lambda Determines the amount of shrinkage, the penalty

term, to be applied to regularize the effect of pre-
dicting features 10seq(−3,3,length=100)

alpha Determines what type of penalized regression
model is fit

1

Ridge Regression
lambda Determines the amount of shrinkage, the penalty

term, to be applied to regularize the effect of pre-
dicting features 10seq(−3,3,length=100)

alpha Determines what type of penalized regression
model is fit

0

Elastic Net Regression
lambda Determines one of the amounts of shrinkage, the

first penalty term, to be applied to regularize the
effect of predicting features

0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1

alpha Determines one of the amounts of shrinkage, the
second penalty term, to be applied to regularize
the effect of predicting features

0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 1
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each tree split balanced by the improvement of the SSE (sum of squared errors)
value and averaged over all trees [23].

In the case of Random Forest, the variable importance score was used. The
scores are computed using MSE (mean square error) first obtained on the sub-
sample of data for each tree that was not used during model construction, and
once again with variables reshuffled. The differences are then averaged and di-
vided by the standard error. Lastly, to infer the significance of independent
variables of penalized linear regression, the coefficients as the estimators of fea-
tures’ importance, controlled by a penalty term, were obtained. After the order
of importance of predicting features in each considered model was acquired, the
individual conditional expectation plots (ICE plots) were constructed to decide
the directionality of the relationship between the outcome and the most impor-
tant features. The partial dependence plot displays the marginal effect of one or
more features on the predicted outcome, and it was used to assess the direction
of the relation between an outcome and a feature [24].

Finally, the whole procedure was repeated without variable with the number
of reposts at the first level of resharing to investigate its relative importance for
reasons discussed below.

4 Results

Table 4 shows the performance of all nine models predicting the mass of a cascade
on both non-normalized and normalized data. Due to differently preprocessed
sets of the data, values of RMSE for the first three and the remaining six models
fall into different number ranges. However, it is still possible to compare R-
squared values among nine models, and RMSE values within models built on the
same data. The highest performance on cascade’s mass prediction is attributed
to the penalized linear regression – the percentage of explained variance in the
outcome goes beyond 97%. Among these three models, the most accurate appears
to be the Lasso regression, having the smallest root mean square error.

R-squared and RMSE metrics of nine models predicting cascade’s width and
nine models for cascade’s depth are laid out in the same table, respectively,
with the very same technical peculiarities mentioned for the mass predicting
models’ performance. The best models for prediction of cascade’s width are
Gradient Boosting Machine on non-normalized data and Lasso and Elastic Net
regressions on the normalized dataset, achieving the highest R-squared values of
approximately 0.99, and the lowest RMSE values. Finally, in the case of depth
of a cascade, the best predictive performance is shown by the Gradient Boosting
algorithm on both datasets, with 57% explained variance in the outcome variable.
Judging by lower RMSE value, this model built on the non-normalized data is
slightly more accurate.

Additionaly, it should be noted that width and depth of information cascade
are predicted more accurately, with models accounting for almost 100% of the
variance in the target variable while cascade’s depth was predicted poorly, com-
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Table 4. Models’ performance figures.

Cascade’s
Metric

Model R-squared
Value

R-squared
Value (with
one feature
out)

RMSE RMSE (with
one feature
out)

Mass

Decision Tree (non-scaled data) 0.962 0.247 20.226 89.598
Random Forest (non-scaled data) 0.966 0.252 18.540 90.018
Gradient Boosting (non-scaled data) 0.97 0.242 17.670 88.503
Lasso Regression (scaled data) 0.972 0.230 0.166 0.888
Ridge Regression (scaled data) 0.970 0.178 0.196 0.906
Elastic Net Regression (scaled data) 0.972 0.232 0.168 0.888
Decision Tree (scaled data) 0.960 0.024 0.208 1.861
Random Forest (scaled data) 0.923 0.084 0.320 2.039
Gradient Boosting (scaled data) 0.966 0.059 0.182 2.156

Depth

Decision Tree (non-scaled data) 0.539 0.089 0.673 0.957
Random Forest (non-scaled data) 0.550 0.117 0.662 0.949
Gradient Boosting (non-scaled data) 0.571 0.136 0.648 0.921
Lasso Regression (scaled data) 0.316 0.115 0.828 0.950
Ridge Regression (scaled data) 0.334 0.120 0.815 0.971
Elastic Net Regression (scaled data) 0.305 0.103 0.836 0.951
Decision Tree (scaled data) 0.511 0.034 0.70 1.059
Random Forest (scaled data) 0.560 0.113 0.666 0.981
Gradient Boosting (scaled data) 0.572 0.112 0.665 0.956

Width

Decision Tree (non-scaled data) 0.969 0.312 15.260 68.407
Random Forest (non-scaled data) 0.980 0.319 11.817 70.180
Gradient Boosting (non-scaled data) 0.984 0.320 11.064 67.911
Lasso Regression (scaled data) 0.984 0.266 0.122 0.867
Ridge Regression (scaled data) 0.983 0.201 0.155 0.893
Elastic Net Regression (scaled data) 0.984 0.270 0.122 0.867
Decision Tree (scaled data) 0.964 0.058 0.196 2.528
Random Forest (scaled data) 0.924 0.107 0.333 2.121
Gradient Boosting (scaled data) 0.981 0.070 0.137 2.405
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pared to other metrics of cascade’s size, reaching maximum of 57% of explained
variance.

The following models were considered for interpretation: Lasso regression for
cascade’s mass prediction and Gradient Boosting built on the non-normalized
dataset predicting both width and depth of a cascade. The most prominent
feature associated with cascade’s mass was the number of reshares on the first
level of a cascade. On the relative scale of overall variable importance, assessed on
the base of absolute values of regression coefficients, ranging from 0 to 100, this
feature scored the maximum. Figure 1 (see in Appendix) depicts the mentioned
variation. Further conclusions about features’ importance were drawn on the
base of the same method, partial dependence plots. The same was observed
for other metrics – their increase was strongly associated with the number of
reposts on the first level of a cascade. In the model predicting cascade’s width,
this feature reached 97 out of 100 points on the normalized scale of features’
relative influence. In predicting the depth, it scored 70 out of 100, compared to
other features that barely exceeded 3 points.

Thus, most of the variation in cascade’s size can be explained by the change in
the number of reshares on the first level of the information propagation tree. This
relation itself appeared to be positive, meaning that the increase in the number
of reposts on first-level is attributed to the growth of a cascade in depth, width,
and mass (see Fig. 3 and Fig. 2 in Appendix).

Among other features, relatively significant appeared to be content features:
probability distributions of several text topics, all of the used channel’s audience
features, one of the root poster features, and channel features. For prediction of
cascade’s mass, the number of reposts on the first level of a cascade is followed
by prevailing sex of channel’s followers, the number of channel’s followers, the
cumulative number of channel’s audience’ followers, the number of comments
to channel’s posts, the number of root post’s likes, and average age of channel’s
audience. According to the coefficients (see Fig. 2 in Appendix), the prevalence of
male users among channel’s followers and the number of channel’s followers are
negatively associated with the mass of a cascade, while the rest of the mentioned
features – positively.

As for the cascade’s width prediction, the number of reposts on the first
level is followed by the probability distributions of the following topics: “West-
Russia relations”, “The Voice Russia”, “TV shows: comedy and dancing”, and
“Weather”. They appeared to be positively correlated with the cascade’s width,
as the marginal effect of each topic exceeds zero. Finally, for the depth prediction
the number of comments to channel’s posts, the number of channel’s audience’
followers, and the number of likes to channel’s posts are relatively important.
Interestingly, only the number of reposts at the first level of resharing, among
all mentioned features, is positively associated with the depth of a cascade.

As the number of reposts at the first level of propagation cascade accounted
for the overwhelming part of the variance in all three metrics modeled, we pro-
pose that the growth of a cascade can be attributed solely to this feature. To
investigate this proposition, we repeated the whole procedure without this vari-
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able. As a result, the set of best-fit algorithms has changed (see Table 4). Now,
the best model for predicting the mass of a cascade is Random Forest trained
and assessed on non-normalized data. As for cascade’s width and depth, Gradi-
ent Boosting Machine on the non-normalized dataset emerged as most accurate.
R-squared values of all nine models for each metric substantially decreased, not
reaching even half of the value of their counterparts in a situation when the
removed feature was present.

Further, scaling of the dataset for prediction of all three metrics gives a sub-
stantial fall in R-squared values compared to those resulting from the non-scaled
data. As for the most crucial features, the cumulative number of channel’s audi-
ence followers, content characteristics, and the number of comments to channel’s
posts explain most of the variation. Surprisingly, the increase in the latter shows
a negative association with cascade’s depth, while others are positively associ-
ated with cascade’s metrics.

Additionally, we considered marginal effects of age and sex of a channel’s
audience on the cascade’s size in the models without the number of reposts on
the first level. The prevailing sex of a channel’s audience indicated by users as
“male” is negatively correlated with the size of a cascade. The marginal effect
of the average age of a channel’s audience on cascade’s mass equals zero for
most of the predictor values except for the value of 33.84, where it falls below
zero. Its marginal effect on the width of a cascade is negative, while on the cas-
cade’s depth, it is the exact opposite, indicating positive association. However
interesting, we abstain from an in-depth analysis of factors associated with cas-
cade growth and their contribution and limit our interpretations as we aim to
investigate the methodological value of the findings.

5 Conclusions & Discussion

In this work, we examine the issue of information spread in online social networks
by attempting to find the best-fit model that can be used to predict the growth of
propagation cascades. Although there are existing studies that have addressed
similar objectives, we contribute to the research by approaching the problem
with the data from Russian-speaking social networking service. After obtaining
the best-fit models, we look at the features that contributed the most in order
to determine the possibly noteworthy constituents of the models able to predict
variation in the outreach of an information cascade.

The results showed that non-linear algorithms perform better when predict-
ing the growth of information cascade – which is consistent with [10] and [9]
works. Except for the prediction of mass of a cascade with a full set of features,
which is most accurately predicted with regularized linear regression. Further-
more, it should be noted that R-squared values for the models with all features
included are objectively quite high, indicating that models can explain up to
98% of the variation in cascade’s size – in contrast to Martin and his colleagues’
study [15] which achieved a maximum of 48% of explained variation.
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The interpretation of the best-fit models indicated that features of all cat-
egories either way appeared as one of the most contributing to the prediction,
similarly to [14]. However, not all features have the same degree of importance
for the accuracy of prediction, which is more in line with [9]. The growth of
an information cascade in width, depth, and its gain in mass can be attributed
entirely to the number of reposts on the first level of a cascade – formally, to
the number of edges directly connected to the root of a cascade, while other
features have a relatively small effect on the outcome when included in a model
altogether. Although logically evident, this finding raises questions whether this
connection can be explained by the propagation mechanics and the data speci-
ficity, or is it an artifact of the platform where the study was conducted. It
should be noted that on VK, there is no way a user can see the number of likes,
reshares, or views of the original post at the point when this post was reposted,
i.e., from the account of a user who did the repost. In addition to that, when a
repost is done, a reposter is able to place a caption to the reshared post – fairly
modifying resharing information.

Nevertheless, a sharp decrease in R-squared value by three times for all mod-
els, after removing the number of reposts on the first level of resharing from the
predicting features, suggests that the eventual outreach of content diffusion can
be predicted with high accuracy by this feature solely. Hence, we can conclude
that the observed structural variation in depth and width of a propagation tree,
and its eventual magnitude highly depends on the activity of the source’ audi-
ence that serves as an intermediary in letting the information leak beyond where
it was initially posted. Note that such an audience includes not only followers of
a channel but also users who are not bounded by the followership relations to a
channel.

Additionally, the results of [11] study were also partly supported – features
related to an author of a post (in our case, channel features) combined with
content features benefited the predictive power of the models, yet only when the
number of shares on the first level was excluded. This finding lets us suggest
that if we assume that there are specific scripting strategies that each channel
uses to differentiate itself and the content it posts from other news channels, the
eventual reach of information propagation depends on the source’s (channel’s)
specificity. Furthermore, users that make the propagation possible – in line with
the selective exposure theory [25] – intentionally choose from what source and
what news information to consume depending on the attributes of both source
and content.

Content features on their own were consistently important for predicting cas-
cade’ s growth with models using all features and models without the number
of shares on the first level, compared to other features. This validates conclu-
sions of work by Hong and colleagues [12]. However, predicting models without
the number of reposts on the cascade’s first level let us conclude that, contrary
to Elsharkawy and colleagues’ work [13], audience features are more relevant
for prediction of cascade’s growth than channel’s features. Further, if cascade’s
growth can be relatively successfully predicted by audience features, a question



Modeling Cascade Growth: Predicting Content Diffusion on VKontakte 13

about users’ similarity or dissimilarity as a possible driver of information diffu-
sion can be considered.

Finally, channel features and one of its audience features, prevailing sex of
channel’s audience indicated as male, that showed negative association when
reaching a certain value with the depth of a cascade, raise suspicions. In the case
of channel features, it appears that the number of followers of the author of the
content (a channel) – simply put, channel’s popularity – has a negative influence
on information propagation depth. We can speculate that such a phenomenon
can be linked to the reputation of Russian news channels’ representation in
the chosen social network. The online channels are assumed to be perceived
by users of this social network as not trustworthy enough to ‘participate’ in
spreading its content. Besides, the negative association between the number
of channel’s followers and the depth of a diffusion tree can be attributed to
specifics of the publication sorting mechanism of the VKontakte platform. Still,
further research is needed for the explicit connection and rationale of such a
pattern to be established. As for male audiences having a negative impact on
the cascade’s growth, it can be allegedly explained by male users’ tendency to less
frequently become intermediate recipients (brokers) of information in a network
of information diffusion, compared to female users. Yet, to claim it as a fact,
more research on the topic should be conducted.

Limitations

It is important to note that the reposting data used in the study is news posts
published on official communities of Russian television channels, making the
results valid only for such or a similar sample. This study’s findings cannot be
generalized on reposting patterns of any other content on social media platforms
except for news data. Another limitation of our research is connected to metrics
used to assess models. In the case of “black box” models, it is debatable whether
the R-squared value can be applied for assessment of their predictive power.
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A Appendix
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Fig. 1. A graph showing top-10 of the most tangible predicting features used as input
by the Lasso Regression algorithm for cascade’s mass prediction.
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Fig. 2. A plot displaying negative to positive values proportion of Lasso Regression
variables’ coefficients.
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Fig. 3. Plots showing observation-level effects of the number of posts first-level reposts
on cascade’s depth (on the left) and width (on the right). The multiple black lines
are individual conditional expectation (ICE) curves, while the red line stands for the
averaged values across all predictions [24] by Gradient Boosting algorithm.
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